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A. EINSTEIN

THE formal similarity of the curve of the chromatic distribution
of black-body radiation and the Maxwell velocity-distribution is
too striking to be hidden for long. Indeed, already Wien in his

important theoretical paper in which he derived his displacement
law

- p = v f(v/T) (1)
ki was led by this similarity to a further determination of the
§. radiation formula. It is well known that he then found the
- formula

p = GCVS e-—kﬂkT, (2)

& which is also nowadays accepted as being correct as a limiting law
I for large values of v/T (Wien’s radiation law). We know nowadays
'; '*LT that no considerations based on classical mechanics and electro-
- dynamics can give us a usable radiation formula, and that classical
theory necessarily leads to the Rayleigh formula

ko
p = -il-va (3)

* As soon as Planck in his classical investigation based his radiation
g ¢ formula

. p=ay W (4)

|-.
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f on the assumption of discrete elements of energy, from which very
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168 THE OLD QUANTUM THEORY

quickly quantum theory developed, it was natural that Wien’s
discussion which led to equation (2) became forgotten.

Recently '+ I found a derivation of Planck’s radiation formula
which is based upon the basic assumption of quantum theory and
which is related to Wien’s original considerations; in this deriva-
tion, the relationship between the Maxwell distribution and the
chromatic black-body distribution plays a role. This derivation
is of interest not only because it 1s simple, but especially because
it seems to clarify somewhat the at present unexplained phenomena
of emission and absorption of radiation by matter. I have shown,
on the basis of a few assumptions about the emission and absorp-
tion of radiation by molecules, which are closely related to
quantum theory, that molecules distributed in temperature
equilibrium over states in a way which 1s compatible with quantum
theory are in dynamic equilibrium with the Planck radiation.
In this way, I deduced in a remarkably simple and general manner
Planck’s formula (4). It was a consequence of the condition that
the distribution of the molecules over the states of their internal
energy, which is required by quantum theory, must be established
solely through the absorption and emission of radiation.

If the assumptions about the interaction between radiation and
matter which we have introduced are essentially correct, they must,
however, yield more than the correct statistical distribution of the
internal energy of the molecules. In fact, in absorption and
emission of radiation, momentum is transferred to the molecules;
this entails that merely through the interaction of radiation and
molecules the velocities of the molecules will acquire a certain
distribution. This must clearly be the same velocity distribution
as the one which the molecules attain through the action of their
mutual collisions alone, that is, it must be the same as the Maxwell
distribution. We must require that the average kinetic energy (per
degree of freedom) which a molecule acquirés in the Planck
radiation field of temperature T is equal to 1kT'; this must be true
independent of the nature of the molecules considered and
independent of the frequencies of the light emitted or absorbed by

1 The considerations given in that paper are repeated in the present one.
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them. In the present paper, we want to show that our simple
hypotheses about the elementary processes of emission and

absorption obtain another support.
In order to obtain the above-mentioned result we must, however,

complete to some extent the hypotheses upon which our earlier
work was based, as the earlier hypotheses were concerned only
with the exchange of energy. The question arises: does the
molecule receive an impulse when it absorbs or emits the energy &?
Let us, for instance, consider the emission from the point of view
of classical electrodynamics. If a body emits the energy e, 1t

" receives a recoil (momentum) ¢/c if all of the radiation ¢ is emitted

in the same direction. If, however, the emission takes place as an
isotropic process, for instance, in the form of spherical waves,

"no recoil at all occurs. This alternative also plays a role in the

quantum theory of radiation. When a molecule during a transition
from one quantum-theoretically possible state to another absorbs
or emits energy ¢ in the form of radiation, such an elementary
process can be thought of either as being a partially or completely
directed or as being a symmetrical (non-directional) process.
It now turns out that we arrive at a consistent theory only, if we
assume each elementary process to be completely directional.
This is the main result of the following considerations.

1. Basic Hypothesis of Quantum Theory.
Canonical Distribution over States

According to quantum theory, a molecule of a given kind can
take up—apart from its orientation and its translational motion—
only a discrete set of states Z,, Z,, ..., Z,, ... with (internal) energies
€1, £, ...s &y -.- . 1f molecules of this kind form a gas of temperature
T, the relative occurrence W, of these states Z, is given by the
formula giving the canonical distribution of statistical mechanics:

W, = p,e /. (5)

In this equation kK = R/N is the well-known Boltzmann constant,
and p, a number which is characteristic for the molecule and 1its
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nth quantum state and which is independent of T; it can be called
the statistical “weight™ of the state. One can derive equation (5)
either from Boltzmann’s principle or by purely thermodynamic
means. Equation (§) expresses the greatest generalisation of
Maxwell’s velocity distribution law.

Recent important progress in quantum theory relates to the
theoretical determination of quantum theoretically possible states
Z, and their weight p,. For our considerations of the principles
involved in radiation, we do not need a detailed determination of
the quantum states.

2. Hypotheses about Energy Exchange through Radiation

Let Z, and Z,, be two quantum-theoretically possible states of
the gas molecule, and let their energies ¢, and e, satisfy the
inequality ¢, > ¢,. Let the molecule be able to make a transition
from the state Z, to the state Z, by absorbing radiative energy
&n— &,; Similarly let a transition from Z, to Z_ be possible in which
this radiative energy is emitted. Let the frequency of the radiation
absorbed or emitted by the molecule in such transitions be v; it is
characteristic for the combination (m, n) of the indices. |

We make a few hypotheses about the laws valid for this
transition; these are obtained by using the relations known from
classical theory for a Planck resonator, as the quantum-theoretical
relations which are as yet unknown.

(a) Spontaneous emission.t It is well known that a vibrating
Planck resonator emits according to Hertz energy independent of
whether 1t is excited by an external field or not. Accordingly, let
it be possible for a molecule to make without external stimulation
a transition from the state Z,, to the state Z, while emitting the
radiation energy &, —é¢, of frequency v. Let the probability dW
that this will in fact take place in the time interval dt be

dW = A" dt, (A)

t Einstein uses Ausstrahlung and Einstrahlung for spontaneous emission and
induced radiation [D.t. H.].
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where A; denotes a constant which is characteristic for the
combination of indices considered. .

The statistical law assumed here corresponds to the law of a
radioactive reaction, and the elementary process assumed here
corresponds to a reaction in which only y-rays are emitted. It is
not necessary to assume that this process takes place instan-
taneously; it is only necessary that the time this process takes is
negligible compared with the time during which the molecule is
in the state Z, ....

(b) Induced radiation processes. If a Planck resonator is in a
radiation field, the energy of the resonator can be changed by the
transfer of energy from the electromagnetic field to the resonator:
this energy can be positive or negative depending on the phases of
the resonator and of the oscillating field. Accordingly we intro-
duce the following quantum-theoretical hypothesis. Under the
influence of a radiation density p of frequency v a molecule can
make a transition from the state Z, to the state Z,, by absorbing
the radiative energy e¢,—é¢, and the probability law for this
process 1s

dW = B™ p dt. (B)

Similarly, a transition Z,, - Z, may also be possible under the
influence of the radiation; in this process the radiative energy
¢w— &, Will be freed according to the probability law

dW = B p dt. (B’)

The B, and B}, are constants. These two processes we shall call
“changes in state, induced by radiation”.

The question now arises: what is the momentum transferred to
the molecule in these changes in state? Let us begin with the
induced processes. If a radiation beam with a well-defined
direction does work on a Planck resonator, the corresponding
energy 1s taken from the beam. According to the law of conserva-
tion of momentum, this energy transfer corresponds also to a
momentum -transfer from the beam to the resonator. The

resonator 1s thus subject to the action of a force in the direction
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of the beam. If the energy transferred is negative, the action of
the force on the resonator is also in the opposite direction. This
means clearly the following in the case of the quantum hypothesis.
If through the irradiation by a beam of light a transition Z, - Z,,
is induced, the momentum (¢, — ¢,)/c 1s transferred to the molecule
in the direction of propagation of the beam. In the induced
transition Z — Z_ the transferred momentum has the same
magnitude but 1s 1n the opposite direction. We assume that in the
case where the molecule is simultaneously subjected to several
radiation beams, the total energy ¢,,—¢, of an elementary process
18 absorbed from or added to orne of these beams, so that also
in that case the momentum (g,—¢,)/c i1s transferred to the
molecule.

In the case of a Planck resonator, when the energy is emitted
through a spontaneous emission process, n0 momentum is trans-
ferred to the resonator, since according to classical theory the
emission is in the form of a spherical wave. We have, however,
already noted that we can only obtain a consistent quantum theory
by assuming that the spontaneous emission process is also a
directed one. In that case, in each spontaneous emission elemen-
tary process (Z,,— Z,) momentum of magnitude (¢,—¢,)/c is
transferred to the molecule. If the molecule is isotropic, we must
assume that all directions of emission are equally probable. If the
molecule i1s not 1sotropic, we arrive at the same statemeat if the
orientation changes in a random fashion in time. We must, of
course, make a similar assumption for the statistical laws (B) and
(B’) for the induced processes, as otherwise the constants should
depend on direction, but we can avoid this through the assump-
tion of 1sotropy or pseudo-isotropy (through time-averaging) of
the molecule. |

3 ‘Derivation of the Planck Radiation Law

- We now ask for that radiation density p which must be presént
in order that the exchange of energy between radiation and
molecules according to the statistical laws (A), (B), and (B’) does
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not perturb the distribution (5) of the molecules. For this it is
necessary and sufficient that on the average per unit time as many

elementary processes of type (B) take place as of types (A) and
(B’) combined. This combination leads, because of (5), (A), (B),
and (B’), to the following equation for the elementary processes
corresponding to the index combination (m, n):

p,e”**" By p = p,e T (B} p+ A}).

If, furthermore, p will increase to infinity with 7, as we shall
assume, the following relation must exist between the constants
B and B’,:

' Pn By = P B (6)

We then obtain from our equation the following condition for
dynamic equilibrium:
Al By,
P = e AT 7" (7)

This is the temperature-dependence of the radiation density of
the Planck law. From Wien’s displacement law (1) it follows from

this immediately that

AH
B—E = av’, (8)
and Ep—Ey = hV, (9)

where o and 4 are constants. To find the numerical value of the
constant a, we should have an exact theory of the electrodynamic
and mechanic processes; for the time being we must use the
Rayleigh limit of high temperatures, for which the classical theory
is valid as a limiting case. _

Equation (9) is, of course, the second main hypothesis of Bohr’s
theory of spectra of which we can now state after Sommerfeld’s
and Epstein’s extensions that it belongs to those parts of our
science which are sure. It contains implicitly, as I have shown, also
the photochemical equivalence rule,
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4. Method of Calculating the Motion of Molecules
in the Radiation Field

We now turn to the investigation of the motions which our
molecules execute under the influence of the radiation. To do this,
we use a method which is well known from the theory of Brownian
motion, and which I have used already many times for numerical
calculations of motion in radiation. To simplify the calculations,
we only perform them for the case where the motion takes place
only in one direction, the X-direction of our system or coordinates.
We shall moreover restrict ourselves to calculating the average
value of the kinetic energy of the translational motion, and thus
do not give the proof that these velocities v are distributed accord-
ing to Maxwell’s law. Let the mass M of the molecule be
sufficiently large that we can neglect higher powers of v/c in
comparison with lower ones; we can then apply ordinary
mechanics to the molecule. Moreover, without any real loss of
generality, we can perform our calculations as if the states with
indices m and n were the only ones which the molecule can take on.

The momentum Mv of a molecule is changed in two ways in
the short time 7. Although the radiation is the same in all direc-
tions, because of its motion the molecule will feel a force acting
in the opposite direction of its motion which comes from the
radiation. Let this force be Rv, where R is a constant to be
evaluated later on. This force would bring the molecule to rest,
if the irregularity of the action of the radiation did not have as a
consequence that during the time 7 a momentum A of varying sign
and varying magnitude is transferred to the molecule; this
unsystematic influence will against the earlier mentioned force
maintain a certain motion of the molecule. At the end of the
short time 7, which we are considering, the momentum of the

molecule will have the valuc
Muy— Rt + A.

As the velocity distribution must remain the same in time, this

.. 1 | .

i_
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quantity must have the same average absolute magnitude as Mv:
therefore, the average squares of those two quantities, averaged
over a long period or over a large number of molecules, must be

equal to one another:
(Mv—Rut+A)? = (Mv)2.

As we have separately taken into account the systematic
influence of v » on the momentum of the molecule, we must neglect
the average Av. Expanding the left-hand side of the equation,

we get then

AZ=2RMp?z. (10)

The average v? for our molecules, which is caused by radiation
of temperature T through its interaction with the molecules must

be equal to the average value v?, which according to the kinetic
theory of gases a molecule in the gas would have according to the
gas laws at the temperature 7. Otherwise, the presence of our
molecules would disturb the thermodynamic equilibrium between
black-body radiation and any gas of the same temperature.
We must then have

iMv? = 3kT. (11)

Equation (10) thus becomes

| =
— = 2RKT. (12)

The investigation must now proceed as follows. For given

} radiation [p(v)] we can calculate A% and R with our hypotheses

about the interaction between radiation and molecules. Inserting
these results into (12), this equation must be satisfied identically

if p as function of v and T is expressed by the Planck equation (4).

i 5. Calculation of R

Let a molecule of the kind considered move uniformly with
¢ velocity v along the X-axis of the system of coordinates K. We ask
¢ for the average momentum transferred by the radlatlon to the
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molecule per unit time. To be able to evaluate this, we must
consider the radiation in a system of coordinates K’ which 1s at
rest relative to the molecule under consideration, because we have
only formulated our hypotheses about emission and absorption
for molecules at rest. The transformation to the system K’ has
often been given in the literature and especially accurately in
Mosengeil’s Berlin thesis.? For the sake of completeness, I shall,
however, repeat the simple considerations.

In X the radiation is isotropic, that is, we have for the radiation
per unit volume in a frequency range dv and propagating in a
direction within a given infinitesimal solid angle dk:

dx

4’ (13)

pdv—
where p depends only on the frequency v, but not on the direction.
This particular radiation corresponds in the coordinate system K’
to a particular radiation, which is also characterised by a frequency
range dv’ and a certain solid angle dx’. The volume density of this

particular radiation 1s

p'(V', ¢’ )dv drc (13')

This defines p’. It depends on the directi()n which is defined in
the usual way by the angle ¢’ with the X’-axis and the angle y’
between the projection in the Y'Z’-plane with the Y’-axis. These
angles correspond to the angles ¢ and  which in a similar manner
fix the direction of dx with respect to K. -

First of all it is clear that the same transformation law must be
valid between (13) and (13') as between the squares of the
amplitude 42 and 4’2 of a plane wave of the appropriate direction
of propagation. Therefore in the approximation we want, we have

p'(v,¢)dvidx' . 0
oy dvdR = 1 ZCcosqb, (14)
( dv di zv 14’
or P4 = PO, dx( “cos ). (14)
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The theory of relativity further gives the followmg formulae,
valid in the approximation needed here,

Vv = v(l -z-cos qb), (15)
cos P’ = ces¢;£>—-l(-;+gc¢')s2 o, (16)
Vo= . (17)

From (15) in the same approximation it follows that

v=1y (1 +£cos q')’).

Therefore, also in the same approximation,
r v !
p(v) =p (v +Ev COS t;b’),

% (v)v

or p(v) = p(v')+- p
V C

-v'cos ¢’ (18)

Furthermore from (15), (16), and (17) we have

dv v

7= 1+ccosq'>

de | singpdpdy  d(cos qb)
di’  sin ¢’ do’ dy’ d(cos ¢')

Using these two relations and (18), we get from (14’)

p(v, @) = [p(v)+ v cos ¢/ —= ;(v)](1—3£cos¢’). (19)

v
= 1—2- ’.
ccosc,b

From .(19) and our hypothesis about the spontaneous emission
and the induced processes of the molecule, we can easily calculate
the average momentum transferred per unit time to the molecule.

Before doing this we must, however, say something to Justify the
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methed used. One can object that the equations (14), (15), and
(16) are based upon Maxwell’s theory of the electromagnetic field
which is incompatible with quantum theory. This objection,
however, touches the form rather than the essence of the matter.
Whatever the form of the theory of electromagnetic processes,
surely in any case the Doppler principle and the aberration law
will remain valid, and thus also equations (15) and (16). Further-
more, the validity of the energy relation (14) certainly extends
beyond that of the wave theory; this transformation law is, for
instance, also valid according to the theory of relativity for the
energy density of a mass having an infinitesimal rest mass and
moving with (quasi-) light-velocity. We can thus claim the validity
of equation (19) for any theory of radiation.

The radiation corresponding to the spatial angle dk’ will

according to (B) lead per second to
dx’
BH‘I ’ I, !

induced elementary processes of the type Z, = Z,, provided the
molecule is brought back to the state Z immediately after each
such elementary process. In reality, however, the time spent per
second in the state Z, is according to (5) equal to

ép.. e~ /M,
where we used the abbreviation _
S=pe T tp e tm/T (20)
In actual fact the number of these processes per second is thus
1

dx’
= —z,./kTBm TN, ’ '
Splle ﬂp(v!¢)4n

In each process the momentum

Em % cos ¢’

c
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is transferred to the molecule in the direction of the positive
X'-axis. Similarly, we find, using (B’) that the corresponding
number of induced elementary processes of the kind Z,, -+ Z, per
second is

1 dax’
— _Em,kT r ! !
S Pme€ B"mp(v,¢)—4n,

and in each such elementary process the momentum

Em—E&,
C

cos ¢’

1s transferred to the molecule. The total momentum transferred

per unit time to the molecule through induced processes is thus,
taking (6) and (9) into account,

hv' dxc’
Bm ~en/kT —sm/k]') YW ’ !

where the integration is over all elements of solid angle. Perform-
ing the integration we get, using (19), the value

hv 0
—?g(p—%v-a—-ﬁ)p..B.':"(e""""‘"—e"'“”‘") v,

Here we have denoted the frequency involved by v (instead
of v').

This expression represents, however, the total average momen-
tum transferred per unit time to a molecule moving with a
velocity v; because it is clear that the spontaneous emission
processes which take place without the action of radiation do not
have a preferential direction, considered in the system X’, so that

they can on average not transfer any momentum to the molecule.
We obtain thus as the final result of our considerations:

hv ap
R=——|{ p—4v-= ~en/kT (1 __ ,—hv/kT
czs(ﬁ’ b av)P"Bfe (1—e™™AT) (21)
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6. Calculation of A2

It is much simpler to calculate the influence of the irregularity
of the elementary processes on the mechanical behaviour of the
molecule, as we can base this calculation on a molecule at rest in

the approximation which we have used from the start.
Let some event lead to the transfer of a momentum A in the

X-direction to a molecule. Let this momentum have varying sign
and varying magnitude in different cases, but let there be such a
statistical law for A that the average value of A4 vanishes. Let now
Ay, A,, ... be the values of the momentum in the X-direction trans-
ferred to the molecule through several, independently acting causes
so that the resultant transfer of momentum A is given by

A=Z4,

As the average value ,T,; vanishes for the separate A,, we must
have

A2 =322, ' (22)

If the averages Tﬁ of the separate momenta are equal to one

another (= )-7), and if / is the total number of momentum trans-
ferring processes, we have the relation |

AZ =172, (22a)

According to our hypothesis in each elementary process,
induced or spontaneous, the momentum

).—h—:cos:ﬁ

is transferred to the molecule. Here ¢ is the angle between the

X-axis and a direction chosen randomly. Therefore we have

—2_ hv
A ‘E(c)‘ (23)
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As we assume that we may take all elementary processes which
take place to be independent of one another, we may apply (22a).
In that case, / is the number of all elementary processes taking
place during the time 7. This is twice the number of the number
of induced processes Z, —» Z,, during the time . We have thus

2
= 5P Bl et T gy, (24)
We get from (23), (24), and (22)
A2 2 [(hy ~
T 33‘( ) PaBy e ™ T p, (25)

7. Results

To prove now that the momenta transferred by the radiation to
the molecules 1n accordance with our hypotheses never disturb the
thermodynamic equilibrium, we only need to sybstitute the values

~ (25) and (21) for A%/r and R which we have calculated after we

have used (4) to replace in (21) the quantity

(p--%v %) (1—e™™T)

by phv/3kT. It then turns out immediately that our fundamental
equation (12) 1s identically satisfied.

The considerations which are now finished give strong support
for the hypotheses given in Section 2 about the interaction between
matter and radiation through absorption and emission processes,
that 1s, through spontaneous and induced radiation processes.
I was led to these hypotheses by my attempt to postulate as simply
as possible a quantum theoretical behaviour of the molecules
which would be similar to the behaviour of a Planck resonator of
the classical theory. I obtained then in a natural fashion from the
general quantum assumption for matter the second Bohr rule
(equation (9)) as well as the Planck radiation formula.
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The most important result seems to me, however, to be the one
about the momentum transferred to the molecule in spontaneous
or induced radiation processes. If one of our assumptions about
this momentum transfer is changed, this would lead to a violation
of equation (12); it seems hardly possible to remain in agreement
with this relation which is required by the theory of heat otherwise
than on the basis of our assumptions. We can thus consider the
following as rather certainly proved. -~

If a ray of light causes a molecule hit by it to absorb or emit
through an elementary process an amount of energy Av in the form
of .radiation (induced radiation process), the momentum hv/c is

always transferred to the molecule, and in such a way that the

momentum is directed along the direction of propagation of the
‘ray if the energy 1s absorbed, and directed in the opposite direc-
tion, if the energy is emitted. If the molecule is subjected to the
action of several directed rays of light, always only one of them
will participate in an induced elementary process; this ray alone
defines then the direction of the momentum transferred to the
molecule. -

If the molecule undergoes a loss of energy of magnitude hv
without external influence, by emitting this energy in the form of
radiation (spontaneous emission), this process is also a directed
one. There is no emission in spherical waves. The molecule
suffers in the spontaneous elementary process a recoil of magnitude
hv/c in a direction which 1s in the present state of the theory
determined only by “chance™. |

These properties of the elementary processes required by

equation (12) make it seem practically unavoidable that one must -

construct an essentially quantum theoretical theory of radiation.
The weakness of the theory lies, on the one hand, in the fact that
it does not bring any nearer the connexion with the wave theory
and, on the other hand, in the fact that it leaves moment and
direction of the elementary processes to “chance”; all the same,
I have complete confidence in the reliability of the method used

here.
Still one more general remark may be made here. Practically

r. .i-_ .- -’.' _--.
a . . = . -
- T R T -
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all the?ries of black-body radiation are based on a considerati
of the interaction between radiation and molecules. However (;11:
ge.neral one restricts oneself to considering energy-exchar:
Wlt!lOl.lt taking momentum-exchange into account. One f g;’
easily justified in this as the smallness of the moment-a transferere;
Py the_radiati?n entails that these momenta are practically alwae s
in reah!:y negligible compared to other processes causing a chan yc
in Plotlon. However, for the theoretical discussion. these smagll
actl?ns musif be considered to be completely as imp:)rtant as the
obvious actions of the emergy-exchange through radiation, as
energy and momentum are closely connected: one can theref’orc
con51d?r a t-h_eory to be justified only when it is S}]OWD tha;
according to it the momenta transferred by the radiation to th
matter lead to such motion as is required by the theory of heat e
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